Classifying 3D Human Motions by Mixing Fuzzy Gaussian Inference with Genetic Programming
نویسندگان
چکیده
This paper combines the novel concept of Fuzzy Gaussian Inference(FGI) with Genetic Programming (GP) in order to accurately classify real natural 3d human Motion Capture data. FGI builds Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions, providing a suitable modelling paradigm for such noisy data. Genetic Programming (GP) is used to make a time dependent and context aware filter that improves the qualitative output of the classifier. Results show that FGI outperforms a GMM-based classifier when recognizing seven different boxing stances simultaneously, and that the addition of the GP based filter improves the accuracy of the FGI classifier significantly.
منابع مشابه
Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions
This research introduces and builds on the concept of Fuzzy Gaussian Inference(FGI) [1][2] as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone i...
متن کاملA fuzzy probabilistic inference methodology for constrained 3D human motion classification
Enormous uncertainties in unconstrained human motions lead to a fundamental challenge that many recognising algorithms have to face in practice: efficient and correct motion recognition is a demanding task, especially when human kinematic motions are subject to variations of execution in the spatial and temporal domains, heavily overlap with each other, and are occluded. Due to the lack of a go...
متن کاملA Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements
This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where th...
متن کامل3D Hand Tracker for Visual Sign Recognition
The gesture recognition process, in general, may be divided into two stages: motion sensing, which extracts useful data from hand motion; and the classification process, which classifies the motion sensing data as gestures. We have developed the visionbased Hand Motion Understanding (HMU) system that recognises static and dynamic Australian Sign Language (Auslan) signs by extracting and classif...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کامل